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Abstract 
Ths  paper presents a hgh-level overview of the algorithms  and  supporting func- 
tionality provided by SIERRA Framework Version 3 for h-adaptive hte-element 
mechanics application development. Also presented is a fairly comprehensive 
description of what is required by the application codes to use the SIERRA h- 
adaptivity services. In general, the SIERRA framework provides the hctionality 
for hierarchically subdividing elements in a distributed parallel environment, as 
well  as dynamic load balancing. The mechanics application code is  required to 
supply an a posteriori error indicator, prolongation and restriction operators  for the 
field variables, hanging-node constraint handlers, and execution control code.  This 
paper does not describe the Application Programming Interface (API),  although 
references to SIERRA framework classes are given where  appropriate. 
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I Overview 
Support for h-adaptivity is one of the advanced services provided by SIERRA. This paper 
describes at  a high  level the algorithms and supporting functionality available in SIERRA 
Framework  Version 3 for developing  h-adaptive finite-element mechanics applications. We also 
describe what is needed by  the mechanics code for using the h-adaptivity services. This paper is 
not intended to be a reference for the Application Programming Interface (API). We recommend 
consulting the SIERRA header files for those details. The primary interface to this set of services 
is found in the Fmwk-HAdapt class (see Fmwk-HAdapt . h). References to other SIERRA classes 
are also given in this paper where appropriate. A description of the core SIERRA Framework 
Version 3 theory and design is  given in Ref. 1. It is assumed herein that the reader has  some 
familiarity with the contents of that document. 

Adaptivity is  defined to be the process of locally increasing the computational mesh resolution in 
order to achieve a desired solution accuracy more  efficiently. Adaptivity can also be used to 
achieve a more accurate solution for a fixed  amount of resources (e.g., computer memory). 
Without adaptivity, the only alternative (for a given solution method) is to globally increase the 
mesh resolution. Depending on  the particular problem, this can result in a large number of 
unneeded degrees of freedom, in turn leading to a high solution cost. The local increase of mesh 
resolution in an adaptive computation can be achieved in various ways. In h-adaptivity, the mesh 
is  refined  by locally generating smaller elements, i.e., by decreasing the size h of the elements that 
contribute the largest errors. Other types of adaptivity includep-adaptivity (locally increasing the 
order of the finite element shape functions), hp-adaptivity (a combination of h andp-adaptivity), 
and r-adaptivity (relocating nodes  to locally achieve smaller elements). 

There are many different steps needed for an adaptive computation, and there is a clear separation 
as to  which of these steps are “framework” and which are “application.” A general overview of 
the steps composing the adaptive algorithm (applicable to most applications) is given in Fig. 1.1. 

r Estimate Solution 
Solve Physics - Error Distribution 

Application SIERRA 

Figure 1.1. General adaptive algorithm applicable to most applications. Responsibilities 
of the framework and application are shown. The marking of elements (the “adaptive 
strategy”) can be implemented either by the framework (for  a mechanics-independent 
strategy) or by the application (for a mechanics-dependent strategy). 
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In general, SIERRA provides the parallel mesh  refinement  and unrefinement steps, as well as 
dynamic load rebalancing. Those services are all  part of the “Global  Mesh Update” step depicted 
in Fig. 1.2. 

SIERRA provides standard h-refinement of meshes, i.e., elements are subdivided into a given 
number of topologically compatible children. Upon unrefinement, the child elements are removed 
and the original parent element is restored. The application “marks” each element for refinement, 
unrefinement, or neither, based on  some error criterion. The framework then takes over and carries 
out the requested mesh adaptation. 

Utilizing other SIERRA services, application-specific functionality such as the error indicator and 
prolongation (and restriction) operators for the field variables can easily be plugged in. It may also 
be desired to call the error estimator without doing any adaptivity. This flexibility is completely 
controlled by the application code. 

Restrici Prolong 
Variables Variables a 

e Rebalancing is done when the mesh is “smallest”! 

Figure 1.2. Composition of the “Global Mesh Update” service. This 
service is composed of three steps: mesh unrefinement, followed by 
dynamic load rebalancing, followed by mesh refinement. 

The application developer controls how  many times the global mesh update is executed. For 
transient calculations, this sequence can be executed multiple times within a time step. A refined 
element is referred to by the level of refinement, which is the number of (net) refinement steps 
required to generate that element. To control mesh gradation, the framework enforces a maximum 
2: 1 ratio of refinement levels of adjacent elements (this step is shown in Fig. 1.1). This might 
cause elements that have not been designated for refinement by the application to be refined 
anyway. 

The 2: 1 ratio is globally enforced, i.e., refinement on a given processor may trigger refinement on 
other processors. The constrained hanging nodes that appear along a refinement boundary must 
be appropriately handled by the application code. Importantly, refinement always takes 
precedence over unrefinement. For example, an element that has been marked for unrefinement 
would  not  be  unrefined if doing so would fail to maintain the maximum  2: 1 refinement-level ratio. 

In the following sections we describe in more detail both the framework components of adaptivity 
and the responsibilities of application codes. 
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2 Framework  Adaptivity Services 
As indicated in Fig. 1.1, SIERRA provides the global mesh update as well as the 2: 1 refinement- 
level enforcement. The global mesh update, as shown  in Fig. 1.2, consists of mesh unrefinement, 
dynamic load rebalancing, and  mesh  refinement (in that order). Each of these steps is described in 
more detail in  this section. In addition, SIERRA provides a default mechanics-independent h- 
adaptive  strategy. Through the  use of C++ virtual methods, SIERRA allows an application code to 
override this default. For example, an error-based h-adaptive strategy may be developed to  work 
in conjunction with a particular error estimator.  SIERRA does not provide a default a posteriori 
error indicator or error estimator. These are mechanics specific and must be supplied by the 
application code. The default h-adaptive strategy is also described in this section. 

2.1 Parallel Mesh Refinement and  Unrefinement 
Mesh refinement is carried out by hierarchically subdividing elements. The newly created, refined 
elements (the children) become active in the subsequent computation. However, the coarse parent 
element is retained in the data structure and becomes  inactive.  An element may only be  unrefined 
back  to  level 0. That is, if the element does not have children, it cannot be unrefined, implying that 
a mesh can get no coarser than the genesis mesh.  The genesis mesh is the original mesh read from 
the input file. Once an element has been unrefined, each of the child elements (along with any 
faces, edges or nodes that were  used only by the children) is deleted fi-om the mesh data structure, 
and the previously inactive parent element becomes active again. 

Remark 
An alternative strategy would be to allow arbitrary unrefinement to any mesh coarseness. For 
example, unrefinement (and refinement) could be implemented using local mesh 
manipulations (see, for example, Ref. 2). While this is a desirable feature, it is difficult to 
implement for certain element topologies such as hexahedra. One could also completely 
remesh the domain, but this is prohibitively expensive in three dimensions, and perhaps 
impossible to  make robust in parallel. SIERRA is driven  by the requirement to support many 
different types of element topologies including hexahedra, tetrahedra, pyramids, beams, and 
wedges (possibly occurring simultaneously in the mesh). This requirement led to the design 
decision to retain parent elements in the data structure, which allows refinement and 
unrefinement to topologically compatible child and parent elements, respectively, to be easily 
obtained in a parallel environment. 

The refinement process is depicted in Fig. 2.1 for an initial mesh of four quadrilateral elements. 
When  an application marks an element for refinement (denoted by “R’  in the figure), the 
framework  takes over and produces the desired refinement. Recall that the adaptation can take 
place iteratively. If a child element is subsequently refined as shown in the middle picture in Fig. 
2.1, the framework also refines adjacent (unmarked) elements to enforce the 2: 1 maximum 
refinement-level ratio. As shown in the picture on the right, this enforcement may trigger a 
communication step to force elements that may  be on an adjacent processor to also be refined. 
The resulting adaptive mesh is independent of parallel decomposition! 

9 



R = Refine  element 2:l refinement  ratio  enforced 

Figure 2.1. Adaptive mesh refinement process including global enforcement of the 2:l 
maximum refinement-level ratio. 

Although not available as of the release of SIERRA Framework  Version 3.01, the capability for 
snapping new nodes to  the actual geometry is planned. This capability will be used for new nodes 
placed on nonplanar surfaces or material interfaces, and is critical for accurately representing the 
geometry as the mesh is refined. 

The unrefinement process is shown in Fig. 2.2. When  an application marks each child of a 
particular parent element for unrefinement (denoted by “U” in the figure), the framework takes 
over and produces the requested unrefined mesh. 

U = Unrefine element 

Figure 2.2. Adaptive mesh unrefinement process. 

Unrefinement can occur only if the following criteria hold: 
All of a parent’s child elements have been marked for unrefinement. 
Unrefinement will  not cause the maximum-allowable 2: 1 refinement-level ratio to be 

These cases are shown  in Fig. 2.3. 
exceeded. 



U = Unrefine element 

Figure 2.3. Cases that violate the unrefinement requirements. In 
the first case, not all of the parent's children are marked. In the 
second case, unrefinement would break the 2:l maximum 
refinement-level ratio. In either case the framework ignores the 
unrefinement requests. 

SIERRA uses a refinement template to define the topologies of child elements. In general, these 
topologies must be compatible with the parent topology, in the sense that the resulting shapes on 
the boundaries of parent elements must  allow for (child) mesh continuity and validity across those 
boundaries. In the simplest cases, a hexahedron is subdivided into eight child hexahedrons, a 
tetrahedron is subdivided into eight child'tetrahedrons, and a wedge (three quadrilateral faces and 
two triangular faces) is subdivided into eight child wedges. The two-dimensional examples of a 
quadrilateral and a triangle are shown in Fig. 2.4. In all of these examples, the child mesh is 
formed by connecting the midpoints of the parent edges to form a valid subdivision of the parent 
element. 

I 
Figure 2.4. Refinement templates as defined for the 
quadrilateral and triangle elements. 
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2.2 Dynamic  Load  Rebalancing 
Following the mesh  unrefinement step and preceding the mesh refinement step, the application 
can request that the framework dynamically rebalance the mesh  among the processors. As 
indicated in Fig. 1.2, the steps are done in this order so that rebalancing occurs when the mesh is 
smallest (to minimize the communication overhead). Since rebalancing is an option, the 
application can turn it on or off at any time. For example, the application could choose to only 
rebalance every other refinement iteration. Alternatively, the application could compute a measure 
of “balance,” then turn on rebalancing only if it is needed. 

The application is responsible for defining the computational load on each element (the element 
load measure) which is then  used  by the partitioning algorithm. The framework provides methods 
for registering the element load measure variable on each element (see Fmwk-Region . h). The 
default value for the load measure is 1 .O. Since load rebalancing occurs before mesh refinement, 
the load measure on to-be-refined elements must be adjusted to account for the load following 
refinement. This adjustment is handled by the framework. Before calling the partitioning 
algorithm, the framework multiplies each to-be-refined element (i.e., each currently active future 
parent) by the number of children that parent will produce. It is  assumed that the element load 
measure of the children will be the same  as that for the parent. 

The determination of a new, load-balanced partition of the mesh is carried out by the Zoltan 
dynamic load-balancing library [3]. The framework then uses this partition to redistribute the 
mesh  among the processors. The mesh-partitioning algorithm is limited to those available in 
Zoltan, and can be specified  by the application. The  SIERRA interface to Zoltan is given in the 
Fmwk-Rebalance class (see Fmwk-Rebalance . h). 

Remark 
The complete functionality for dynamic load rebalancing without using h-adaptivity is 
available to the application through the  Fmwk-Rebalance interface. For example, this might 
be useful for calculations with chemical reactions where the workload in each element varies 
depending on the number of chemical species present. 

The framework provides an option for restricting the scope of the rebalancing to genesis extent 
only.  The interface to this option is given in the Fmwk-HAdapt class (see Fmwk-HAdapt . h). The 
description and purpose of this option are described next. 

Rebalancing with Genesis-Extent-Only Option 

The genesis extent refers to a mesh extent (i.e., a set of mesh objects) as defined in SIERRA (see, 
e.g., Fmwk-MeshExtent . h). It is equal to the original mesh read from the mesh input file.  When 
the genesis-extent-only option is activated, an entire genesis-element family hierarchy (i.e., 
original element plus all descendants) remains together on a processor at all times. In other words, 
parents and children are never allowed to split among the processors. This does not mean that they 
must remain on the same processor for all time, however. It does mean that if the dynamic load- 
rebalancing step moves an element, the entire genesis-element family hierarchy must  move  with it. 

12 
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An example of rebalancing with the genesis-extent-only option is shown in  Fig, 2.5. In this 
example a genesis mesh of four quadrilateral elements is partitioned between two processors. It is 
assumed that the application code iteratively marks the element in the lower-left corner for 
refinement. After three refinement iterations, the mesh in the right picture is produced. With the 
genesis-extent-only option, the children (and grandchildren, etc.) of the original lower-left 
element cannot be split between the two processors. Therefore, the best the load balancer can do 
is produce the mesh with 3 elements on processor 0 (PO) and 10 elements on processor 1 (Pl). 
(This is only marginally better than if dynamic load balancing was not performed at all.) 

Genesis Mesh 
P I  I 
Mesh after 3 refinements: 
- PO: 3 elements 
- P I  : 10 elements 

Figure 2.5. Dynamic load rebalancing with the genesis-extent-only option activated. 

The trade-off for choosing the genesis-extent-only option is that less communication is required at 
the expense of a possibly lower-quality partition. The additional communication required for the 
general load-balancing case (i.e., genesis-extent-only not activated) involves parents and off- 
processor children. If an element is to be  unrefined, then its children must all exist on the same 
processor for that unrefinement to occur. In SIERRA, regardless of the genesis-extent-only 
option,parents with no grandchildren are always kept on the sameprocessor with all of their 
children. In other words, the children of these parents are not allowed to move independently of 
their parent, since these parents are candidates for unrefinement. If grandchildren (and beyond) 
exist, however,  then the children are allowed to independently migrate to another processor (in  the 
general case). 

The additional expense for the general case is two-fold: (1) communication lists must be 
generated and stored for connecting parents with their off-processor children, and (2) any just- 
unrefined children must be moved back on the same processor as their parent ifthat parent will no 
longer have any grandchildren following the subsequent refinement step. (This step is to re-unite 
those children with their parents, a requirement mentioned in the previous paragraph.) The second 
step involves a lot of bookkeeping and communication since the children of a future one- 
generation parent (parents without grandchildren following the subsequent refinement) might be 
spread among  several different processors. 

For many problems the genesis-extent-only option will likely work well. In general, it is 
recommended that this option be used, and turned off only ifit is evident that  a sufficiently 
balanced load cannot otherwise be achieved. The example shown in  Fig. 2.5 represents a worst- 
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case scenario-refinement into a corner. For the general load-balancing case (genesis-extent-only 
turned off), a much  more balanced mesh  is possible. This case is shown in Fig. 2.6. In the picture 
on  the right, three great-grandchildren of the lower-left genesis element have been migrated off P 1 
onto PO. 

Genesis Mesh I 
Mesh after 3 refinements: 
- PO: 6 elements - PI:  7 elements 

Figure 2.6. Dynamic load rebalancing without the genesis-extent-only option. In 
this example, a much more balanced mesh is obtained. 

3 SIERRA  Default  h-Adaptive  Strategy 
The  h-adaptive strategy is the process of converting element error indicators to an element 
refinement marker (see Fig. 1.1). SIERRA allows for three possible values of this marker: refine, 
unrefine, or neither. Many adaptive strategies (both h and hp) have appeared in the literature (see, 
for example, Refs. 4 and 5), and some are tied to particular error indicators. The default SIERRA 
strategy is independent of any particular mechanics, and requires user specification of two 
parameters, a, and a, (with 0 5 a, < a, 5 1 ), which control the amount of refinement and 

unrefinement, respectively. Given the global maximum element error indicator, emax,  we compute 
the refinement and unrefinement error thresholds, viz., 

Elements k with an error indicator ek > eref are marked for refinement, while those with 

ek < eunref are marked for unrefinement. All other elements are unmarked (although they still 
could be  refined if necessary for enforcing the maximum-allowable 2: 1 refinement-level ratio). It 
is evident that decreasing a, increases the amount of refinement, while decreasing a, decreases 

the amount of unrefinement. Recall from Section 1 that the element error indicators, ek , are 
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computed  by  the  application  code. A more  detailed  discussion of the error indicator computation 
is given in Section 4.1. 

4 Responsibilities of Application Codes 
To use  the  adaptivity capability in SIERRA, application  codes must supply  the following: 

an a posteriori error indicator (see Fig. 1.1) 
prolongation  and  restriction operators for  field  variables, as required (see Fig. 1.1) 
hanging-node constraints 
execution  control code 

In addition, the application developer may supply an h-adaptive strategy that  would  override the 
SIERRA  default  strategy  described  in the previous section. The  above components are described 
in more detail in  Sections  4.1  through 4.4. 

4.1 A Posteriori Error Estimation 
The  role of the aposteriori error indicator is  to populate an element variable  with  some physically 
meaningful  “error,”  which  would  then  be  used  by  the  adaptive strategy to mark the element for 
refinement (if the error is  sufficiently  large),  unrefinement  (if the error is  sufficiently small), or 
neither.  The  error indicator need  not  be an error estimator (which computes an absolute error); it 
only  needs  to  supply  information  on  the relative error distribution among the elements. 

Most a  posteriori error-estimation techniques are strongly dependent on  the  mechanics and the 
partial differential equations. Effective  error indicators also usually require  knowledge  of  the 
mechanics,  such  as  the  use  of a first or second  derivative  of density or Mach number to adapt a 
mesh in  the  vicinity of a shock. In many cases  the error indicator  is a subset of the error estimator 
(e.g., an  error  indicator  might  be  an  element  residual  or  the element contribution to the  error 
measured  in  some  global  norm). Therefore, it  is  impossible for a computational ‘‘framework” to 
provide  general  error estimators or error indicators to the applications using it. However, SIERRA 
does  provide  services that make  it easier to develop  these estimators or indicators, especially in a 
parallel  environment.  Hereafter,  we drop the  term “error indicator” and use only “error estimator” 
for  simplicity. 

In many cases it is  necessary  to  form a local  element patch for computing the error estimate. Such 
a patch might  be  formed of elements containing a particular node (a node-based patch) or of 
elements  connected to a particular element (an  element-based patch). Examples of patch-based 
error estimators are  Zienkiewicz-Zhu (ZZ) [6] and  subdomain residual methods [7 ] .  The dynamic 
creation of these patches is handled  by  SIERRA for a given  node or element object (see 
Fmwk-MeshOb j . h). In order to  use this functionality,  the application must  first instruct SIERRA 
to assemble and store  the  node-to-element  connectivity. If the application wants to preserve 
memory and not  store those connectivities,  the patches can alternatively be assembled (directly by 
the application) by iterating the standard element-to-node connectivities. In a parallel 
environment  the situation is  more complicated, as shown  in Fig. 4.1. The formation of patches for 
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nodes  or  elements  on a processor  boundary  requires  communication to neighboring processors. In 
this case, (temporary,  read-only)  ghost objects (nodes  and  elements)  must be constructed before 
the  patches  can  be  created.  All  communication  and  construction of the ghost objects are handled 
by SIERRA. The  application  is  responsible for instructing SIERRA to create the ghost objects 
(see Fmwk-MeshManuf ac ture . h), and also for deleting the  ghost objects when they are no 
longer needed.  (The capability forpersistent (readable and writeable) ghosting of mesh objects  is 
planned  for future versions of SIERRA. In this case  the  framework  would  handle  the  deleting  of 
ghost  objects,  as  well  as  the  maintaining  of  globally consistent updates of their field  values,  the 
reghosting  of  objects  following  dynamic load rebalancing or restart, etc.) 

PO I P1 PO 1 P1 

I ghost elements’ I 

Figure 4.1. Generation by SIERRA of a node-based  element  patch for node x. 
The  node lies on  an  interprocessor  boundary  (see left picture). To create this 
patch  on  processor 0, two elements  and three nodes  are  “ghosted”  (see right 
picture). These  ghost objects are  temporary  read-only copies that  can be 
discarded (by processor 0) when the  patch is no  longer needed. 

SIERRA provides many utility functions for helping  the  application compute an error estimate. 
These include functions to compute  local  (on a given processor) and global (across all processors) 
L, norms,  as well as  local and global  element-error  minima  and maxima. Specifically for the ZZ 
error estimator, SIERRA provides a function to register (i.e., tell  the  framework to allocate 
memory for) the recovered  nodal gradient on all the mesh nodes.  Also provided is a function to 
recover  the gradient of a scalar nodal  variable (see Apub-RecoverGradient . h); the function 
includes  the local least-squares projection (currently only the projection onto a trilinear 
polynomial has been  implemented).  The application needs to provide only the  values of the scalar 
gradient and the : 1, x, y, z, xy, y z ,  xz,  xyz) trilinear basis functions at  the sampling points in each 
element. 

Many linite-element error estimators require  the  solution of local  residual problems, a global  dual 
problem,  or  both  (see, for example, Refs. 5, 7, 8, and 9). While these problems involve  the 
solution  of partial differential  equations and therefore  must be solved by the mechanics 
application, SIERRA does  provide  services for setting  up and handling the data for those 
problems.  The aposteriori error bounds  developed  by  Paraschivoiu et al. [8], for example, require 
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the  solution  of  three  new  problems  (in  addition to the  primary problem): (1) a series of  local 
primal residual  problems on a broken “truth” mesh, (2) a global  dual  problem on the  original 
coarse  mesh,  and (3) a series of  local dual residual  problems  on a broken “truth” mesh. Fig. 4.2 
shows  how  the  broken “truth” mesh is  obtained  from  the  original  coarse  mesh. 

Figure 4.2. Obtaining the broken “truth” mesh. Definitions of (a) an original coarse 
“working” mesh; (b) a “truth” mesh, which is a global refinement of the coarse working 
mesh; and (c) the broken “truth” mesh, where each piece is a refinement of a single 
element in the coarse working mesh. The a posteriori error estimator described in Ref. 8 
solves local residual problems independently on each piece of the broken “truth” mesh. 

One  way this may  be  addressed  in  an  application  is  by  creating a new SIERRA region (see Ref. 10 
for a description  of  the SIERRA region)  for each different  problem. This leads to the coexistence 
of four regions: the coarse primal region  (i.e.,  the original region  used  by  the application), the 
“truth” primal region,  the  coarse dual region, and the “truth” dual region. Each region  has its 
own mesh and  fields,  but  the  mechanics  algorithms can be  shared among regions if necessary.  For 
example,  if  the  differential  operator  is self-adjoint, the  left-hand-side  computation for the  primal 
and  dual  problems  will  be  the  same and, therefore,  use  the  same  mechanics algorithms. 
Eventually,  SIERRA  will  provide a capability to create these  new  regions through a pseudocopy 
operator,  allowing  the application to include or  exclude  algorithms,  insert a different mesh, etc., 
into the “copied” region.  (This operator is  not  available  in SIERRA Framework  Version 3.) Also, 
the SIERRA transfer algorithms [ 10,111 can  be used to exchange data between  the  regions. This is 
needed, for example, for computing the right-hand-side  residuals for the  primal and dual “truth” 
problems. 

Another class of  error estimators is  based  on extrapolation, such  as Richardson extrapolation. 
Implementation  of  these  types  of error estimators is made much easier with the SIERRA 
adaptivity  services, particularly the mesh refinement  capabilities coupled with the application’s 
prolongation  operators.  The SIERRA transfer operators would also be  useful if extrapolation to 
arbitrarily sized  meshes  is  desired (i.e., meshes that are not obtained by subdividing coarse 
elements). 

4.2 Prolongation and Restriction Operators 
The  prolongation  and restriction operators are  used to assign  new  values to field  variables on the 
newly  refined and unrefined mesh objects, respectively.  For  nodal  variables, prolongation often 
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involves  simply  averaging  the  field  values of its  parent  object’s  (edge, face or element) nodes. 
There is  public  code for managing  this  (in  the apublic area of SIERRA) that can be called by 
any application. Care  must  be  taken  whenever  the new node  is  placed on a nonplanar  surface  or 
material  interface  and  snapped to the  actual  geometry. (As mentioned in Section 2.1, this 
capability  is  not  available as of the  release of SIERRA Framework  Version 3 .O 1 , but  is  planned  for 
the future.) Since  the  node’s  location,  in general, would not be at the centroid of its parent face or 
edge, special  treatment  might  be  necessary.  In  most  cases, no action  is required for nodal variables 
following  unrefinement  because  the parent nodes  are  the same ones used in the  child  elements.  In 
those  instances  the  nodal  restriction operator is a no-op. 

Some variables may require a particular type  of  interpolation  (e.g., mass-conserving) following 
refinement,  while  other  variables,  such  as  an  element  error  norm,  would not require  any  action 
(since  the error norm on  the  child  elements  would  be  recomputed  following  the subsequent 
computation  on  the adapted mesh). The  possibilities  for  prolongation and restriction algorithms, 
particularly for  element  variables,  are  many.  They  depend  strongly on the  specific  variable  as  well 
as on the application. Some very  simple  algorithms  are described below. 

Copy prolongation  operator 

This operator  might  typically  be  applied  for  element  variables  on a uniform strain element. In  this 
operator,  shown in Fig. 4.3, all element  values  in  the parent element are copied to the child 
elements. 

Parent Element Child Elements 

Figure 4.3. Copy prolongation operator. 

Copy nearest integration-point  prolongation  operator 

This operator  might  typically  be  applied  on fully integrated elements for element variables 
defined  at  integration points. As depicted in Fig. 4.4, integration-point values  in  the parent 
element  are  copied to all of  the  integration points in the child element that contains the parent 
integration  point. (We assume  here  that each child element contains exactly one of its parent’s 
integration  points.) 
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o Parent Elem IP 
Child 

Parent Element  Child  Elements 

Figure 4.4. Copy nearest integration-point prolongation operator 

Interpolate prolongation operator 

This operator might typically be applied on fully integrated elements for element variables 
defined at integration points. As depicted in Fig. 4.5, integration-point values in the parent 
element are used to calculate a least-squares fit to a linear interpolation. The child integration- 
point values are then interpolated. This operator can also be applied to uniform strain elements. In 
this case, the least-squares interpolation function is computed on an element-centered patch with 
respect to the parent element. The quasi-statics code adagio [ 121 uses this type of prolongation 
operator for the following element variables: stress, rotated stress, and strain energy. The  method 
used  to generate the least-squares function is exactly the same as that used for the ZZ error 
estimator (see Section 4.1). Note: In a Lagrangian context, this must be recomputed every 
increment if the geometry changes. 

Parent Element  Child  Elements 

Figure 4.5. Interpolate prolongation operator 

Average restriction operator 

This operator is typically applied to a uniform strain formulation element. All element values in 
the child elements are averaged and the results copied to the parent element, as shown in Fig. 4.6. 
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Parent Element Child Elements 

Figure 4.6. Average restriction operator. 

Average nearest integration-point restriction operator 

This  operator  is typically applied  on  fully  integrated elements for element variables  defined  at 
integration points. Integration-point values  in a child  element are averaged and copied to the 
integration  point  in  the  parent  element  that  is  contained inside that child element. This is depicted 
in Fig. 4.7. 

o Parent Elem IP 
Child Elem IP 

Parent Element Child Elements 

Figure 4.7. Average nearest integration-point restriction operator. 

Interpolate restriction operator 

This  operator  is typically applied  on fully integrated elements for element variables  defined  at 
integration  points. Integration-point values  in  the  child element are used to calculate a least- 
squares  fit to a linear interpolation. The  values  associated with the parent integration point that 
falls  in  that  child element are then interpolated. This  is depicted in Fig. 4.8. 
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Parent Element Child Elements 

Figure 4.8. Interpolate restriction operator. 

4.3 Hanging-Node  Constraint  Handling 
Hanging nodes are created along  the transition regions  between  refinement  levels in a mesh. A 
simple  example  is  shown in Fig. 4.9. One of two hexahedra  is  refined,  which creates the  five 
hanging nodes shown  in the picture  on  the right. One hanging  node  is  on  the face that  separates 
the two elements, and  the  other  four are at the  midpoints  of edges. (It is  important to note that 
SIERRA does not  actually  generate these internal  faces  and  edges  unless  the  application  code 
requests  them.)  The  application  developers  are  responsible  for writing the equations to handle 
this situation. 

Figure 4.9. Creation of hanging nodes following adaptive refinement. 

The  simplest  approach is to constrain the  value  of any field  defined on the node to be  the average 
of  the  nodal  values  of its parent object. For  example,  the  face hanging node  in Fig. 4.9 has that 
face  as  its parent. The constraint would force that  node’s  fields to be the average of the  values of 
the  face’s four comer nodes (this makes  sense because the  hanging node is  at the center of  the 
face).  Similarly,  the  edge hanging-node field  values  would  be constrained to be the average of the 
values  of  the  edge’s  two nodes. 
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The fi-amework provides services to assist application developers in writing the  constraint 
equations. These services include providing a list  of all hanging nodes, simple access to the nodes 
of  the  parent object (edge or face), and a way to  iterate those nodes. 

Application developers are also responsible for enforcing the hanging-node constraints.  If linear 
solvers are used, enforcement may be possible through a particular linear-solver package. 
Constraints may be enforced, for example, with Lagrange multipliers or a penalty formulation. 
Finally, application developers are responsible for resolving possible conflicts between 
constraints. This might happen if a hanging node is  on a Dirichlet boundary, or  if a hanging node 
is involved in contact. 

4.4 Execution  Control 
The execution control code includes the calls  to  the SIERRA methods that  perform the mesh 
refinement and unrefinement. An example containing pseudocode is shown in  Fig. 4.10. The code 
corresponds very closely with the algorithm flow diagram given in Fig. 1.1. 

The control code also contains the logic, such  as looping constructs, that might dictate,  for 
example, how  many times the sequence of mesh-adaptation steps gets executed for a single time 
step in a transient calculation. Following a single mesh-adaptation sequence, the user may wish to 
re-solve for  the physics solution  on the new mesh (the outer adapt loop), or  to  speed up execution 
(at the expense of accuracy of  the error indicator), the user may wish to repeat the adaptation 
sequence using the prolongatedhestricted  solution, without re-solving (the inner adapt loop). 
These kinds  of decisions are application driven. 

The “MARK ELEMENTS” step  in  Fig.  4.10  refers to the h-adaptive  strategy. The default strategy 
(supplied by the framework) was described in Section 3. The framework version is a C t t  virtual 
method (in the Fmwk-HAdapt class) that can be overloaded by a derived application class. 



time  loop { 
outer  adapt  loop { 

solve  physics 
inner  adapt  loop { 

compute  error  indicator 
if  (stopping  criterion)  break 
MARK  ELEMENTS 
RESOLVE  MARKERS 
restrict  variables 
GLOBAL  UPDATE  MESH 
prolong  variables 
MESH  UPDATE  COMPLETION 

I 
I 

I 

// Framework or application 
// Framework 

// Framework 

// Framework 

Figure 4.10. Example of execution control (pseudo) code  driving  the  adaptivity process. Code such as 
this must be  supplied  inside  the  application. 

The stopping criterion shown both  in Fig. 1.1 and Fig. 4.10 is  also supplied by  the application 
code.  Usually a stopping criterion would be error-based-if the error (as computed by  the  error 
estimator)  is below some tolerance, execution would break out of the adapt  loop  and  proceed to 
the  next  time step. If  such a stopping criterion is not implemented, however, the alternative is to 
specify (possibly via the input file) a specific number of inner and outer iterations to be executed 
at each  time step. In  the absence of a reliable error estimator, this is perhaps the only alternative. 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 
e 
e 23 
e 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

a 

References 

1. H. C. Edwards. SIERRA Framework Version 3: Core Services Theory and Design. 
SAND2002-3616. Albuquerque,  NM: San&a National Laboratories, 2002. 

2.  M. W. Beall  and M. S. Shephard. “An Object-Oriented Framework for Reliable Numerical 
Simulations.” Engineering with Computers 15, no. 1 (1999): 61-72. 

3. K. Devine, B. Hendrickson, E. Boman, M.  St. John, and C. Vaughan. Zoltan: A  Dynamic 
Load-Balancing Library for Parallel Applications - User’s Guide. SAND99-1377. 
Albuquerque, N M :  San&a National Laboratories, 1999. 

4. P. Diez  and A. Huerta. “A Unified Approach to Remeshing Strategies for  Finite Element h- 
Adaptivity.” Computer  Methods in Applied Mechanics and Engineering 176 (1 999): 2 15- 
229. 

5. J. R. Stewart and T. J. R. Hughes. “An A Posteriori Error Estimator and hp-Adaptive 
Strategy  for Finite Element Discretizations of the Helmholtz Equation in  Exterior Domains.” 
Finite Elements in Analysis and Design 25 (1 997): 1-26. 

6. 0. C. Zienkiewicz and J. Z. Zhu. “A Simple Error Estimator in the Finite Element Method.” 
International Journal for Numerical Methods in Engineering 24 (1987): 337-357. 

7. I. Babuska and T. Strouboulis. The Finite Element Method and its Reliability. Oxford, UK: 
Oxford University Press, 200 1. 

8. M. Paraschvoiu,  J. Peraire, and A.  T. Patera. “A Posteriori Finite Element Bounds  for 
Linear-Functional Outputs of Elliptic Partial Differential Equations.” Computer  Methods in 
Applied Mechanics and Engineering 150 (1 997): 289-3 12. 

9. D. Estep, M. G. Larson, and R. D. Williams. “Estimating the Error of Numerical Solutions 
of  Systems  of Reaction-Diffusion Equations.” Memoirs of the American Mathematical 
Society 146, no. 696  (July 2000). 

10. J.  R. Stewart and H. C.  Edwards. “The SIERRA Framework for Developing Advanced 
Parallel Mechanics Applications.” In Proceedings of the First  Sandia  Workshop on Large- 
Scale PDE-Constrained Optimization, Santa  Fe, NM, April 4-6,2001, edited  by 0. Ghattas, 
Springer’s Lecture Notes in Computational Science and Engineering, 200 1. 

11. J. R. Stewart, W. R. Witkowski, K. D. Copps, H. C. Edwards, and J. D. Zepper. “Advanced 
Technologies for Parallel Adaptive Multiphysics Simulation.’’  In Proceedings of  the Fifth 
World Congress on Computational Mechanics (WCCM v), Vienna, Austria,  July 7-12, 
2002, edited by H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner. Vienna, Austria: 
Vienna University of Technology.  ISBN 3-950 1554-0-6.  Available  at http:// 
wccm.tuwien.ac.at. 

12. J. A. Mitchell, A. S. Gullerud, W. M. Scherzinger, R. Koteras, and V. L. Porter. “Adagio: 
Non-Linear Quasi-Static Structural Response Using the SIERRA Framework.” In 

24 



Proceedings of the First MIT Conference in Computational Fluid and Structural Mechanics, 
361-364. Amsterdam: Elsevier, 2001. 

25 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 

e 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 

a 

a 

0 

a 



a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

e 

e 

e 

Distribution 

External 

Texas Institutute  for Computational and Applied Mathematics 
University of Texas at  Austin 
Austin, TX 78712 

Attn: J. Tinsley Oden 

Lawrence Livermore National Laboratory 
P.O.  Box 808 
Livermore, CA 9455 1-0808 

Attn: Evi Dube 

Los Alamos National Laboratory 
P.O.  Box 1663, MS F652 
Los Alamos, NM 87545 

Attn: James S. Peery 

Massachusetts Institute of Technology 
77 Massachusetts Avenue,  Room 37-45 1 
Cambridge, MA 02139 

Attn: Jaime Peraire 

Colorado State University 
Department of Mathematics 
10 1 Weber Building 
Fort Collins, CO 80523-1 874 

Attn: Donald Estep 

Rensselaer Polytechnic Institute 
110 8th St. 
Troy,  NY  12 1 80 

Attn: Joseph E. Flaherty 

Internal 

1 MS 0841 9100 T.  C. Bickel 
1 MS 0835 9140 J. M. McGlaun 
5 MS 0835 9113 S. N. Kempka 

10 MS  0827 9143 J. D. Zepper 
1 MS 0824 9110 A. C. Ratzel 

26 



a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

1 MS 0421 9800 
1 MS 0834 9114 
1 MS 0836 9115 
1 MS 0847 9120 
1 MS 0824 9130 
1 MS  0828 9133 
1 MS 0847 921 1 
1 MS 1110 9214 
1 MS0819 9231 
1 MS0139 9900 

1 MS 0835 9141 
1 MS 0835 9141 
1 MS0835 9141 
1 MS0835 9141 
1 MS 0835 9141 
1 MS0835 9141 
1 MS 0835 9141 
1 MS 0835 9141 
1 MS 0835 9141 
1 MS 9217 8920 
1 MS 9042 8728 
1 MS 0826 9113 
1 MS 0826 9114 
1 MS 0834 9114 
1 MS 0834 9114 
1 MS 0825 9115 
1 MS 0838 9116 
1 MS 0828 9133 
1 MS0847 9133 
1 MS0316 9233 
1 MS 0316 9233 
1 MS0316 9233 

1 MS 0847 9142 
1 MS 0847 9142 
1 MS 0847 9142 
1 MS 0835 9142 
1 MS 0847 9142 
1 MS 0847 9142 
1 MS 0847 9142 
1 MS 0847 9142 
1 MS 0847 9142 

W.  L. Hermina, 
J. E. Johannes 
E. S. Hertel 
H. S. Morgan 
J. L. Moya 
M. Pilch 
S. A. Mitchell 
D. E. Womble 
E. A. Boucheron 
M. 0. Vahle 

S. W. Bova 
R. J. Cochran 
S. P. Domino 
M. W. Glass 
R. R. Lober 
A. A. Lorber 
P. A. Sackinger 
J. H. Strickland 
S. R. Subia 
C. J. Aro 
C .  D. Moen 
D. R. Noble 
E. S. Piekos 
M. M. Hopkins 
P. K. Notz 
J. L. Payne 
R. E. Hogan 
K. J. Dowding 
W. R. Witkowski 
C. C. Ober 
T. M. Smith 
R. Hooper 

M. K. Bhardwaj 
M. L. Blanford 
A. S. Gullerud 
J. D. Hales 
M. W. Heinstein 
S. W. Key 
W. S. Klug 
J. R. Koteras 
N. K. Crane 

27 



1 MS 0847 
1 MS 0835 
1 MS0847 
1 MS 0847 
1 MS 0847 
1 MS 0847 
1 MS 0807 
1 MS 0847 
1 MS9217 
1 MS0847 
1 MS 9405 
1 MS 0847 

1 MS 0827 
1 MS 0827 
1 MS 0827 
1 MS 0827 

20 MS 0827 
1 MS 0827 
1 MS0827 
1 MS 0827 
1 MS 0827 
1 MS 0827 

20 MS 0827 
1 MS 0827 

1 MS1111 
1 MS0819 
1 MS0819 
1 MS0819 
1 MS0819 
1 MS0819 
1 MS 0847 

1 MS9018 
2 MS 0899 

9142 
9142 
9142 
9142 
9142 
9 142 
9338 
9142 
9214 
9127 
8726 
921 1 

9143 
9143 
9143 
9143 
9143 
9143 
9143 
9143 
9143 
9143 
9143 
8920 

9215 
923 1 
923 1 
923 1 
923 1 
923 1 
9226 

8945-1 
9616 

1 MS0612 9612 

J. A. Mitchell 
K. H. Pierson 
V. L. Porter 
T. J. Preston 
G. M. Reese 
T.  F. Walsh 
B. H. Cole 
K. F. Alvin 
M. F. Adams 
J. Jung 
R. E. Jones 
M. S. Eldred 

K. M. Aragon 
K. N. Belcourt 
D.  M. Brethauer 
K. D. Copps 
H. C. Edwards 
C. A. Forsythe 
M. E. Hamilton 
J. R. Overfelt 
J. S. Rath 
G. D. Sjaardema 
J. R. Stewart 
A. B. Williams 

K. D. Devine 
K. H. Brown 
K. G. Budge 
S. P. Burns 
D. E. Carrol 
R. R. Drake 
S. J. Owen 

Central Technical Files 
Technical Library 
Review & Approval Desk for DOE/OSTI 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 28 
e 


	Abstract
	Acknowledgement
	Contents
	Figures
	1 Overview
	2 Framework Adaptivity Services
	2.1 Parallel Mesh Refinement and Unrefinement
	2.2 Dynamic Load Rebalancing

	3 SIERRA Default h-Adaptive Strategy
	4 Responsibilities of Application Codes
	4.1 A Posteriori Error Estimation
	4.2 Prolongation and Restriction Operators
	4.3 Hanging-Node Constraint Handling
	4.4 Execution Control

	References
	Distribution

